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Abstract

A fracture mechanics based failure criterion for unidirectional composites under combined loading has been de-

veloped. The predictions from this criterion have been compared with experimental data obtained from combined

compression–torsion loading of glass and carbon fiber reinforced polymer composites of 50% fiber volume fraction. The

specimens were loaded under rotation control and displacement control in a proportional manner. Comparison of the

Budiansky–Fleck kinking model, specialized to a solid circular cylinder, and the new failure model against experimental

data suggests that the Budiansky–Fleck model predictions do not capture the variation of compressive strength as a

function of shear stress for glass fiber composites. This is because these composites fail predominantly by compressive

splitting. The Budiansky–Fleck model predictions are appropriate for composites that fail by compressive kinking. The

new model predictions capture the experimental results for glass composites where the compression strength is initially

unaffected by shear stress but undergoes a drastic reduction when a critical value of shear stress is reached.
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1. Introduction

The compressive strength of fiber reinforced polymer matrix composites (FRPC) has been a limiting

design feature in the use of FRPC as a primary structural member. Beginning with the work by Rosen

(1965), who modeled the fiber composites as a layered plate material undergoing elastic buckling, a sig-

nificant amount of insight into the compressive behavior of composites has been gained by a combination

of experiments and analytical modeling. The existing literature in the area of compressive behavior of

FRPC can be broadly divided into two areas based on the failure mechanism being investigated. The first is

the microbuckling of fibers in an inelastic matrix leading to kinking of fibers under the action of pure

compression loading and another is the splitting failure of composites. The splitting failure mode in glass
composites has been reported by Piggott (1981), Piggott and Harris (1980), Lee and Waas (1999) and Oguni
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and Ravichandran (2000). Splitting is a distinctly different failure mechanism from kinking. This mecha-

nism, like kinking, is found to be a compressive strength limiting feature in glass composites. Lee and Waas

(1999), and independently, Oguni and Ravichandran (2000) developed fracture mechanics based failure

models for predicting the compressive splitting strength of FRPC. Compressive splitting has also been
observed in other brittle materials like rock and certain classes of ceramics (Nemat-Nasser and Horii, 1982;

Nemat-Nasser and Deng, 1994). Splitting failure in these materials have been modeled by appealing to

ideas of fracture mechanics, for example, the wing–crack model (Horii and Nemat-Nasser, 1985, 1986).

In FRPC, compared to splitting, the kinking failure mode has been studied exhaustively through ex-

periment and analytical/numerical modeling (Argon, 1972; Budiansky, 1983; Fleck et al., 1995; Kyriakides

et al., 1995; Fleck, 1997; Vogler and Kyriakides, 1999; Hsu et al., 1999; Vogler and Kyriakides 2001).

Argon (1972) and later Budiansky (1983) were the first to develop models for kinking failure in composites.

They observed that the fibers in a unidirectional fiber reinforced composite are not perfectly straight. Owing
to this, they reasoned that fiber mislignments cause the development of local shear stresses in the composite

under the action of remote pure compressive loads. When these shear stresses exceed the value of the shear

yield stress of the matrix the fibers undergo shear buckling leading to failure in compression. Later Bu-

diansky and Fleck (1993) extended the above ideas to include the effect of matrix strain hardening on the

compressive strength of fiber composites. Similarly, the effect of strain gradients on compressive strength of

carbon fiber composites has been investigated and reported in Wisnom and Atkinson (1997) and Drapier

et al. (2001). Recently, the possibility of kinking initiating due to internal fiber breaks has been given

consideration by Narayanan and Schadler (1999). A survey of the literature on compressive failure can be
referred to in the review paper by Waas and Schultheisz (1996) and a more recent one on the various

compressive strength models by Naik and Kumar (1999). Based on previous research it can be inferred that

the compression strength of polymer composites depends on the fiber mechanical properties, matrix shear

properties, fiber/matrix interface fracture energy, fiber volume fraction, Vf , and initial misalignment of fi-

bers. Understanding the effect of each of these parameters on the observed compressive strength and the

mode of failure is very important if a proper understanding of the compressive behavior of composites is to

be attained. Of the above parameters, induced local shearing stresses governed by the response of the

matrix in shear and the interfacial fracture energy of the composite play an important role in determining
the failure mechanism and the failure strength of the composite.

The presence of shearing stresses, during the application of compressive loads on the specimen, induces

misalignments in the fibers which would degrade the performance of the composite under compressive

loads. Thus, combined axial/torsional loading of solid cylindrical specimens will help in understanding the

effect of shear on the composite compressive strength in a systematic manner. Relatively few experimental

results are available for the combined compression–shear loading of polymer matrix composites. Jelf and

Fleck (1994) conducted tests on hollow composite tubes made of carbon/epoxy with a fiber volume fraction,

Vf of 65%. A constant value of shearing stress was applied to the tubes, after which the compression load
was increased until failure. They found that the composite compressive strength decreased linearly with

increasing values of remotely applied shear stress. Even though a cylindrical tube is an ideal geometry to

study the response of composite materials under combined compression/shear loading, the manufacturing

of the walled tubular specimens of FRPC results in specimen behavior that may not be representative of

FRPC bulk behavior. Studies on the effect of shear on composite compressive strength were also reported

in Vogler et al. (2000) and Vogler and Kyriakides (2001). Tests were conducted on flat coupons of AS4/

PEEK composites with a specially prepared test bed to apply shearing stresses and compression stresses

simultaneously. These studies reported that the compression strength of AS4/PEEK specimens dropped in a
linear manner with increasing values of remotely applied shear stresses. Vogler et al. (2000) performed finite

element analysis of AS4/PEEK under combined compression and shear loading to compare with the ex-

perimental work. These previous investigations on the effect of combined loading on compressive strength

have been restricted to carbon composites at fixed fiber volume fraction, Vf , and under non-proportional
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remote loading. The focus of these studies was the effect of shear on altering the details of kinking. The

present study, on the other hand is focussed on understanding how various parameters influence the mode

of failure under combined loading. To do this, we have chosen to examine the behavior of solid cylindrical

specimens of glass fiber/vinylester and carbon fiber/vinylester unidirectional composites at a fixed fiber
volume fraction of Vf ¼ 50% when subjected to proportional compressive/shear loading.

The paper is organized as follows. Experimental details and results pertaining to the combined com-

pression–torsion experiments are presented first followed by an extension of the Budiansky–Fleck model to

a solid circular cylindrical configuration. This analysis is followed by the introduction of a new splitting

model appropriate for combined loading. This new model is an extension of the earlier work by Lee and

Waas (1999). This is followed by a discussion and comparison of the experimental results with model

predictions. Finally, concluding remarks are offered.

2. Experimental details

Solid cylindrical specimens of Vf ¼ 50% were manufactured using an in-house composite manufacturing

facility. Composites were made using both E-glass (Vetrotex-certainteed) fibers of 24.1 lm diameter and

IM-7-12K carbon fibers (Hexcel) of 5 lm diameter with vinylester resin (Dow Derakane 411-C50). The

specimens were cut with a fine diamond tip saw using a low speed cutting machine into lengths of

63.5 mm. The gage length of the specimen was about 12.6 mm and the average diameter of the specimen
was 6.7 mm. The specimens were subjected to pure compression, pure torsion and combined compres-

sion–torsion under displacement control loading, rotation control loading and combined displacement–

rotational control loading, respectively. The tests were performed on an axial–torsional MTS machine

which had the capacity to simultaneously apply axial and torsional loads. The strains in the specimens

were measured by attaching three strain gages on the specimen surface, two along the axial direction on

opposite surfaces and the third one at an angle of 45� to the vertical. The third strain gage was used to

calculate the shearing strain and the two strain gages along the generators of the cylindrical specimen

were used to measure the axial strain in the specimen. Apart from the strain gage data, data was collected
on the cross head displacement, cross head rotation, axial force and the torque acting on the specimen.

As has been reported in the literature (Martinez et al., 1981; Vogler and Kyriakides, 1999), the type of

gripping influences the failure strength of the fiber reinforced polymer composite under compression. As

can be seen in Fig. 1 the rectangular block grips provide uniform continuous contact with the sides of the

specimen. In contrast, the collet grips have some grooves to improve gripping in torsion, which leads to

non-uniform discontinuous contact. Pure compression tests were done using the block grips along with

the setup shown in Fig. 2 which resulted in a slightly lower compressive strength. We observed that the

initiation of kink bands in the carbon fiber composites occurred inside the grips. The use of collet grips
resulted in a higher compressive strength. For the combined compression-torsion tests it is required that

the specimen be gripped in such a manner that there is no slip between the specimen surface and the

interior of the grip, while rotating the specimen and simultaneously applying an axial load. The grooves

in the collet grips provide the above functionality. Hence, collet grips were used along with an adapter to

mount onto the MTS cross head.

2.1. Testing plan

Initially pure compression and pure torsion tests were performed on the composite specimens, which

correspond to the vertical and horizontal axis of the loading diagram as shown in Fig. 3. The pure

compression tests were performed under displacement control at a uniform cross head displacement of
0.0381 mm/s and the pure torsion tests were performed at a uniform cross head rotation of 0.0635�/min. As
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can be seen in Fig. 3 different loading paths were adopted and the failure mechanism and failure strength in

each case was noted. The loading ratio was defined in terms of the axial displacement and the arc dis-

Fig. 2. Pure compression test setup.

Fig. 1. Grip cross-sections.
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placement as D
Rh, where D is the axial cross head displacement, h is the applied cross head rotation and R is

the radius of specimen. This was repeated for both glass and carbon composites.

2.2. Experimental results

In this section, important features of the experimental results will be presented. The combined com-
pression–torsion loading of solid cylindrical specimens of glass and carbon fiber composites was done under

displacement and rotational control. Fig. 4 shows the proportional loading for a glass/vinylester composite

specimen with D=rh ¼ 5:23 as sensed by the strain gages in the gage section of the specimen. For this type of

loading ratio, Fig. 5 shows the plot of axial stress as a function of shear stress. It can be seen that the curve

∆

θr Pure Torsion

Pure Compression

Fig. 3. Different loading paths in a displacement/rotation control test.
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is non-linear except at the initial stages of loading. The linear variation of axial stress with shear strain for

the same specimen is shown in Fig. 6. Hence, it can be inferred that the non-linear nature of the axial stress-
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Fig. 5. Axial stress vs shear stress for D=rh ¼ 5:23 and glass/vinylester composite.
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shear stress curve is because of the non-linearity induced by the shear response of the composite. This can

be seen in Fig. 7 where the shear stress is plotted as a function of the axial strain. A plot showing the failure

envelope of glass/vinylester and carbon/vinylester composites are shown in Figs. 8 and 9.
An important observation that can be made from the experimental data of the combined loading tests of

glass/vinylester and carbon/vinylester composite specimens is the distinct difference in both the response to

remote shear stress, and in the failure mechanisms. It was found that the glass composites failed by a

combination of splitting and kinking at high values of D=rh. The splitting failure of glass composites is

usually characterized by extensive brooming of fibers in the split region as indicated in Fig. 11. Fig. 12 is a

high resolution SEM micrograph of a longitudinal section in the splitting region of the glass composite. It

can be seen from the SEM pictures that there is extensive fiber/matrix debonding and fiber breakage.

Whereas, at lower values of D=rh ¼ ð0:4� 0:6Þ the failure was by kinking and is shown in Fig. 13. These
observations are similar to those made by Piggott and Harris (1980) in which they found the failure mode

changing from kinking/splitting to kinking as the matrix became softer. In their work they used a matrix

material with different curing times to obtain a range of matrix stiffness and yield stress values for the

matrix. The present work indicates that the effect of remote shear stress beyond the shear yield stress is

similar to that of a partially cured matrix. Thus, matrix stiffness and matrix yield stress are important

parameters in determining the failure mechanism. The failed glass composite specimens were cross-sec-

tioned and observed under SEM to study the failure mode. Figs. 11 and 13 show that there is a change in

failure mode as the shear stress at failure exceeds the shear yield stress of the composite i.e. as the D=rh
value becomes low.

Carbon composites, however, failed by kinking as seen in Fig. 14, throughout the range of loading ratios

for which the tests were conducted. These experimental findings indicate the importance of constructing a

failure model that can capture different and distinct failure mechanisms. Clearly, kinking is not the only

strength limiting mechanism of failure. Our intent in the next section is to establish analytical models for
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Fig. 8. Failure envelope for a carbon/vinylester composite of Vf ¼ 50%.
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kinking and splitting with a view to understanding which parameters influence the different mechanisms of

failure.
Some other observations that were made from the experiments are as follows. For high values of D=rh,

the compressive strength of some specimens were found to increase. This could be due to the fact that for

small rotations of cross-sections, the applied shear strain acts in a manner to reduce the misalignments thus

leading to an increase in compressive failure strength. Further, for high values of D=rh (which implies high

compression and low rotation) torque reversal was observed. This can be seen in Fig. 10, where the torque

undergoes a change in sign. This can be attributed to the result of the interaction between the induced shear

strain caused by the applied axial compression and the sense of the shear strain due to the applied end

rotation. In cases of high D=rh, the induced shear strain must be higher than the applied shear (due to
rotation) causing the relaxation in torque sensed by the torsional load cell. In a load control experiment this

could lead to an instability in torsion, which was the primary reason for conducting the present experiments

under displacement and rotation control.

3. Analysis

The modified Budiansky–Fleck (MBF) model for kinking failure in solid composite cylinders under

combined compression–torsion loading is presented, followed by a novel energy based splitting failure

model in pure compression, pure torsion and combined compression–torsional loading.

3.1. Kinking analysis

The Budiansky–Fleck model is based on the assumption that the shear stress variation is a known
function of the radius of the specimen. However, in case of solid cylindrical specimens the shear stress
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Fig. 11. Typical image of a split region in glass composites with extensive brooming of fibers.

Fig. 12. Image at the cross-section A–A of the splitting zone in a glass composite, Vf ¼ 50%.
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distribution is not a known function of the radius. Hence, the current formulation of Budiansky–Fleck
model was modified to apply it to the case of solid cylindrical specimens. For solid cylindrical specimens,

under pure torsion, Lyon (1991) who extended the work of Nadai (1950), has shown that the expression for

the shear stress sR at radius, r ¼ R in terms of the applied torque, T and the rotation h is as given below in

Eq. (1)

sR ¼ 3

2pR3
T

�
þ h
3

dT
dh

�
ð1Þ

Fig. 14. Kinking failure in carbon composites.

Fig. 13. Kinking failure in glass composites at D=rh ¼ 0.59.
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The expression for critical compressive stress in the presence of remotely applied shear stress, s1 is

derived for a zero angle kink band as follows. As shown in Fig. 15, the free body diagram of a small

segment at a distance r from the center of the cylindrical specimen is considered in the deformed configu-

ration with a uniform axial stress rZ acting along the Z-direction. Then, taking a balance of moments on

this segment, one obtains the following expression for axial stress in terms of the remote shear stress, s1,
the shearing response of the composite material, sðrÞ, within an element of kinked fibers, the initial mis-

alignment angle of the fibers, /, and the applied shear strain, cðrÞ

rz ¼
sðrÞ � s1

/ þ cðrÞ ð2Þ

In the case of solid specimens, the shear stress sðrÞ is not a linear function of r, hence its variation with r is
unknown and cannot be evaluated. However, the variation of shear stress, sðrÞ is known as a function of

shear strain, c, which is a linear function of r given by rh=l, where h is the rotation and l is the specimen

gage length. Therefore the first step in developing the MBF is to express the shear stress as a function of

shear strain, c. This is achieved by expressing the specimen radius r as cl
h . Using the above substitution for r

and multiplying both sides of Eq. (2) by r2drdh and integrating, we can write Eq. (2) asZ 2p

0

Z cR

0

rzð/ þ cÞ c2

m3
dcdh ¼

Z 2p

0

Z cR

0

sðcÞ c2

m3
dcdh �

Z 2p

0

Z cR

0

s1r2 drdh ð3Þ

where m is twist per unit length, h=l. Simplifying the above equation, we obtain the following expression for
average critical compressive stress, rz, where, we substitute T the applied torque for

R 2p
0

R R
0

s1r2 drdh and cR
for shear strain at r ¼ R. Then,

rz ¼
1
c3R

R cR
0

sðcÞc2 dc � T
2pR3

/
3
þ cR

4

ð4Þ

The integral term in (4) represents the shear response of the composite material and can be obtained from

a pure torsion test of the composite with similar fiber volume fraction. In Eq. (4), if we substitute arz for
T

2pR3, where a is the loading ratio, then we obtain an expression for rz in terms of the shear response of the
composite, loading ratio, a, the misalignment angle, /, and the induced shear strain, cR at r ¼ R, as given

θ

Z

τ

τ

τ ∞

τ ∞

dZ

dR
rdθ

r

σz

σz

Fig. 15. Free body diagram of a kinked segment of a cylinder under combined compression and torsion.
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below in Eq. (5). On solving equation (5) we get a limit load for rz at some value of c. This represents the
critical kinking compressive stress for the composite

rz ¼
1
c3R

R cR
0

sðcÞc2 dc

a þ /
3
þ cR

4

ð5Þ

3.2. Splitting analysis

Splitting failure mode has been observed in glass composites by Piggott (1981), Lee and Waas (1999) and

Oguni and Ravichandran (2000). The micrographs of the failed specimens as seen in Figs. 11 and 12 reveal

that the fiber/matrix interfaces split during failure and the fibers are broken. Some of the fibers in the region

of splitting actually show the matrix attached to the fiber surface. This indicates that the splitting failure

does not always happen along the interface but sometimes meanders into the matrix region away from the

fiber/matrix interface. In high fiber volume fractions (0.4–0.6), kink bands are also observed along with the

fiber/matrix splitting failure cracks in glass composites. However, for the glass composites tested isolated
kink bands were never formed as observed in carbon composites. Based on these observations Lee and

Waas (1999) developed a energy based splitting failure model. In following sections, we have extended the

splitting model of Lee and Waas (1999) for pure compression to the case of pure torsion and combined

compression–torsion. For the sake of completeness, all three derivations are presented.

3.2.1. Strain energy release rate, G
Consider a representative volume element (RVE) of the composite, consisting of a concentric cylinder of

fiber and matrix, with a fiber radius, r0 and an outer region of matrix with radius, r1, and subjected to a

external axial load, P and torque, T , as shown in Fig. 16. Following the methodology of the composite

rr1 0

2l 2L

Fiber
Matrix

Unbonded 
region

Bonded 
region

T
P

P

T

Z

r

θ

An RVE of composite with initial crack

Fig. 16. Composite cylinder under compression–torsion loading.
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cylinder model (CCM) as given in the text by Christensen (1991), we assume the composite to be consisting

of a collection of such RVEs. The outer radius of matrix in the RVE is chosen to satisfy the fiber volume

fraction requirement such that r21 ¼ Vf=r20. The outer matrix surface (r ¼ r1) is assumed to be traction free.

The height of the cylinder is taken to be 2L with a interfacial crack of 2l embedded at the interface of fiber
and matrix. The composite is assumed to have perfect bonding outside the crack region (l6 z6L) and
(�L6 z6 � l). The total potential energy is written as P ¼ U � W , where U is the strain energy stored in

the composite cylinder and W is the work done by the external forces.

3.2.2. Axial loading

The expression for strain energy release rate (SERR), Gaxial is derived below. The material is assumed to

behave as a linear elastic material under the action of externally applied axial load, P . The strain energy

release rate, G is defined as follows G ¼ � dP
dA. The crack surface area, A is taken to be 4pr0l. Hence, the

expression for strain energy release rate can be written as G ¼ �1
4pr0

dP
dl .

The total potential energy in the case of displacement control loading (the applied displacement, D, is
held fixed during crack propagation) is

P ¼ U � W ; U ¼ 1

2
PD and W ¼ 0

G ¼ � D
8pr0

dP
dl

Using the definition of compliance, c ¼ D=P , we obtain

dP
dl

¼ � P 2

D
dc
dl

Hence; G ¼ P 2

8pr0

dc
dl

ð6Þ

For load control (the applied load, P , is held fixed in magnitude during crack propagation), we get

P ¼ U � W ; U ¼ 1

2
PD and W ¼ PD

G ¼ P
8pr0

dD
dl

Using the definition of compliance, c ¼ D=P , we obtain

dD
dl

¼ P
dc
dl

Hence; G ¼ P 2

8pr0

dc
dl

ð7Þ

Note that the expression for strain energy release rate, G, is same under load control as well as displacement

control loading due to the assumption of linear elastic material behavior.

For the cracked region in Fig. 16 (�l6 z6 l), the stress state which corresponds to axial compression is

given as follows from Hyer and Waas (2000).

Fiber

rz ¼
PEf

pr20d

Matrix

rz ¼
PEm

pr20d
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where

d ¼ Ef þ Em

1

Vf

�
� 1

�
All other stresses are zero.

The axial contraction of the fiber and matrix can be obtained from the axial strain corresponding to the
above stresses, and is given by

D1 ¼
Z l

�l
�z dz ¼

2Pl
pr20d

For the uncracked region in Fig. 16 (l6 z6 L;�L6 z6 � l), the stress state which is three dimensional,

is given as follows from Hyer and Waas (2000),

Fiber

rr ¼ rh ¼
2P
pr20

abðmf � mmÞðV �1
f � 1Þ

rz ¼
bP
pr20

Ef

�
þ 4amfðmf � mmÞðV �1

f � 1Þ
�

Matrix

rr ¼ 2abP
mf � mm

pr20

r20
r2Vf

�
� 1

�

rh ¼ �2abP
mf � mm

pr20

r20
r2Vf

�
þ 1

�

rz ¼
bP
pr20

Em½ � 4ammðmf � mmÞ�

where

a ¼ 2ð1þ mfÞð1� 2mfÞ
Ef

ðV �1
f

�
� 1Þ þ 2ð1þ mmÞð1� 2mm þ V �1

f Þ
Em

��1

b ¼ Ef

h
þ ðV �1

f � 1ÞfEm þ 4aðmf � mmÞ2g
i�1

The axial strains corresponding to these stresses are as follows.

Fiber

�z ¼ � mf
Ef

rr �
mf
Ef

rh þ
1

Ef

rz ¼ � 4Pmf
pr20Ef

abðmf � mmÞðV �1
f � 1Þ þ bP

pr20Ef

Ef

�
þ 4amfðmf � mmÞðV �1

f � 1Þ
�

Matrix

�z ¼
4abPmmðmf � mmÞ

pr20Em

þ bP
pr20Em

Em½ � 4ammðmf � mmÞ�

The axial contraction of the fiber and matrix are the same and is given by

D2 ¼ 2

Z L

l
�z dz ¼

2bP
pr20

ðL� lÞ
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Hence, the approximate total axial contraction, approximate compliance and change of compliance with

respect to crack length, dc=dl of the composite are as follows

D ¼ 2P
pr20

l
d

�
þ bðL� lÞ

�

c ¼ 2

pr20

l
d

�
þ bðL� lÞ

�
dc
dl

¼ 2

pr20

1

d

�
� b

�
ð8Þ

In computing the above quantities, only the stress states of the cracked and uncracked regions are

considered, whereas a region near the crack tip of finite size � is not considered. In the present analysis, the

above expression for dc=dl is used, even though we have neglected the crack tip stress field in computing

dc=dl. However, as explained later, for steady-state conditions, Eq. (8) is exact. In the region � (Fig. 17), the
stress state is influenced by the crack tip field. However, under steady-state conditions for self-similar crack

growth, this region translates with the crack tip resulting in an increase of l and a corresponding decrease of
ðL� lÞ. Thus, while the axial contraction and compliance given by D and c above are approximate due to

the negligence of the crack tip field, the rate of compliance change due to crack advancement, given by

dc=dl is exact, since the ��� region is invariant with respect to crack length. This fact enables us to calculate

G accurately for steady state crack propagation. When the crack is small, initially the compliance change

with respect to crack length, dc=dl, is dependent on the size of �, but, as the crack length increases, dc=dl,
becomes independent of crack length and attains the steady state value provided in Eq. (8). The derivation

of dc=dl including the dependence on � is given in Yerramalli and Waas (2002a), for non-steady-state crack

growth.

r

Z

l

L

2r0
2r1

Details of the crack region

ε

Fig. 17. Schematic cross-section of fiber–matrix cylinder showing the crack tip details.
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From (8), the energy release rate per unit area is obtained as

G ¼ P 2

4p2r30

1

d

�
� b

�

When G, becomes equal to twice the critical interfacial fracture energy (cf ) the initial crack propagates

G ¼ 2cf ð9Þ

Thus

rcr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8V 2

f cf
r0ð1=d � bÞ

s
ð10Þ

3.2.3. Misaligned fibers

The above analysis was developed for a perfectly aligned fiber. However, the fibers in a composite can

have an initial misalignment with respect to the axial load. The expression for axial compliance for the case

when the fiber is misaligned in the cracked region is presented in the current section. The axial compliance

expression can be obtained by considering a slightly imperfect fiber with an initial imperfection of w0ðxÞ and
using kinematics that are appropriate for geometrically nonlinear beam theory as described in Appendix A.

Then the relation between axial contraction D, and fiber load, Pf , can be obtained as

D1

l
¼ �Pf

AfEf

1

�
þ A2

0Af

2If

�
;

where Af is the fiber cross-sectional area, If is the area moment of inertia and A0 is the imperfection

magnitude. From this relation an effective axial stiffness for the fiber is obtained and is given below

ðEAÞeff ¼
EfAf

1þ A2
0
Af

2If

;

Clearly, when the imperfection vanishes, one recovers the perfect fiber axial stiffness ðEAÞf . In the present

work, the imperfection amplitude is chosen to correspond to an initial misalignment angle of 20. A detailed
derivation of the axial splitting model is presented in Lee and Waas (1999).

3.2.4. Torsional loading

Strain energy release rate expressions for a cylindrical specimen of linear elastic and non-linear elastic

material under the action of pure torsion, T are developed below. Closed form expressions of the strain

energy release rate for a linear elastic material are obtained in terms of the compliance of the material.

The strain energy release rate expression for a cylinder of radius r0, under rotational (displacement

control) and torsional (load control) loading is derived as follows. For rotational control (the applied
rotation, h, is held fixed during crack propagation), we have

P ¼ U � W ; U ¼ 1

2
Th and W ¼ 0

G ¼ h
8pr0

dT
dl
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Using the definition of compliance c ¼ r0h=T , we get

G ¼ T 2

8pr20

dc
dl

ð11Þ

For torque control (the applied torque, T , is held fixed during crack propagation), the expressions are

P ¼ U � W ; U ¼ 1

2
Th and W ¼ Th

G ¼ T
8pr0

dh
dl

Using the definition of compliance, c ¼ r0h=T , we get

G ¼ T 2

8pr20

dc
dl

ð12Þ

The expression for dc=dl for a solid circular cylinder of length 2l and made of linear elastic material is

2=ðGJÞ, where G is the shear modulus of the material and J , is the polar moment of inertia given by pr40=2.
Hence, we can write the expression for strain energy release rate as follows

G ¼ T 2

4pr20GJ

When the strain energy release rate becomes equal to 2cf the crack will propagate leading to failure. The

critical failure stress in torsion can then be written in terms of cf as follows.

scr ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cfG=r0

p
ð13Þ

For a non-linear elastic material, the expression for strain energy release rate, G (we continue with the

notation G even though J is standard notation for non-linear materials), can be obtained as follows. For

displacement control (the applied rotation, h, is held fixed during crack propagation)

P ¼ U � W

U ¼
Z
V

Z c

0

sðfÞdfdV ¼ 4pl
Z r1

0

Z c

0

sðfÞdfrdr

W ¼ 0

ð14Þ

G ¼ � dP
dA

¼ � 1

4pr0

dU
dl

ð15Þ

In Eq. (14), the inner integral is a known function of f, where f is a dummy variable for the purpose of

integration. But, the outer integral in r has to be first converted in terms of shearing strain c since for a solid
cylinder we do not know the distribution of s with respect to the radius of cylinder, r. Using the relations

c ¼ rm, and dr ¼ dc=m, in the integral of Eq. (14) we get the following integral. Here, m is the twist per unit

length given by the ratio h=l

UðcÞ ¼ 4pl
Z cr1

0

Z c

0

sðfÞdf

� �
c=m2 dc ð16Þ

Differentiating Eq. (16) with respect to l we get

dU
dl

¼ 4p
Z cr1

0

Z c

0

sðfÞdf

� �
c=m2 dc ð17Þ

where f is a dummy variable and cr1 is shear strain at radius, r1.
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3.2.5. Combined compression–torsion loading

Consider a concentric cylinder of fiber and matrix with a debond of length 2l as shown in Fig. 16. We can

divide this RVE into a cracked region of linear elastic fiber and a non-linear elastic matrix and an un-

cracked region of non-linear elastic composite. Now let this RVE be subjected to a combined set of axial
and torsional loads as shown in Fig. 16. P is the axial compressive load and T is the torsional load. The

total strain energy release rate under combined compression–torsion loading can be written as the sum of

axial and torsional strain energy release rate contributions. It should be noted that we are implicitly as-

suming that the non-linear torsional response is unaffected by the presence of axial stress. In Appendix B,

we have described an analysis where the matrix and thus, the composite is treated as a deformation theory

of plasticity solid. It turns out that the interaction effects (between axial stress and shear stress) are neg-

ligible and the problem can be addressed by appealing to superposition where the total energy release rate

contribution is computed as the sum of Gaxial and Gtorsion, with each of their contributions computed with
an assumption of non-interaction between axial stress and shear stress. Thus

Gtotal ¼ Gaxial þ Gtorsion ð18Þ

In the present case, it was observed during the experiments that the axial stress–strain curve remains

linear up to the point of failure even under combined compression–torsion loading. Hence, strain energy

release rate, Gaxial is obtained based on linear elastic material behavior. In torsion, the strain energy release

rate, Gtorsion, is obtained by adding the strain energy release rate contributions from a linear elastic fiber and
non-linearly elastic matrix in the cracked region and a non-linearly elastic composite in the uncracked

region under torsional load.

Gtorsion ¼ � 1

4pr0

dU
dl

¼ � 1

4pr0

dU
dl fiber

þ dU
dl matrix|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

cracked region

2
6664 þ dU

dl composite|fflfflfflfflfflffl{zfflfflfflfflfflffl}
uncracked region

3
7775 ð19Þ

Now, explicit relations for the terms entering in Eq. (19) are given below for both the cracked region and
the uncracked region. In the cracked region the fiber is assumed to be linear elastic hence the term dU=dlfiber
can be written as

dU
dl fiber

¼ s2p2r20
2Gfiber

ð20Þ

Also, in the cracked region, the matrix is debonded from the fiber and is modeled as a non-linear elastic

material for the calculation of dU=dlmatrix.

Matrix

dU
dl matrix

¼ 4p
Z cr1

cr0

Z c

0

smðfÞdf

� �
c=m2 dc ð21Þ

Uncracked region. In the uncracked region away from the crack tip we model the composite as a ho-

mogeneous non-linear elastic material. Thus, the expression for dU=dlcomposite can be written as follows:

Composite

dU
dl composite

¼ 4p
Z cr1

0

Z c

0

scðfÞdf

� �
c=m2 dc ð22Þ

From Eqs. (10), (20)–(22), we can write an expression for the total strain energy release rate (SERR) of the

composite as
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GTotal ¼
r2
cr0

4V 2
f

1

d

�
� b

�
þ s2p2r20
2Gfiber

þ 1

r0

Z cr1

cr0

Z c

0

smðfÞdf

� �
c=m2 dcþ 1

r0

Z cr1

0

Z c

0

scðfÞdf

� �
c=m2 dc ð23Þ

When the total strain energy release rate, GTotal becomes equal to 2cf , then splitting failure occurs.

Therefore, we can write the above equation for compression strength, rc, under combined loading as

cf ¼
r2
cr0

8V 2
f

1

d

�
� b

�
þ s2p2r20
4Gfiber

þ 1

2r0

Z cr1

cr0

Z c

0

smðfÞdf

� �
c=m2 dc þ 1

2r0

Z cr1

0

Z c

0

scðfÞdf

� �
c=m2 dc ð24Þ

4. Solution procedure

Eq. (24) relating cf to the axial stress and shear stress acting on the composite is solved numerically to

obtain the critical value of compressive stress and the corresponding value of shear stress. The input pa-
rameters required to solve Eq. (24) are the elastic and geometric properties of fiber, the complete nonlinear

shear response of the pure matrix and the complete nonlinear shear response of the composite and the fiber

volume fraction of the composite. Table 1 shows the properties used in the present failure model. The shear

responses were incorporated in the analytical solution by using the Ramberg–Osgood fit parameters ob-

tained from Yerramalli and Waas (2002b) and are given in Table 2. With the above input parameters, the

equation is solved for the critical value of shear stress or compressive stress for different values of loading

ratios, j, where j is defined as r=s. The critical value of shear stress or compressive stress is attained when

for a particular value of j, the right-hand side of Eq. (23) exceeds the left-hand side value of critical fracture
energy, cf . A range of cf values of 0.1224–0.0408 kJ/m2 has been used to study the effect of fracture energy

on the predicted failure envelope.

5. Discussion

As has been discussed in the experimental results section, the combined axial compression–torsion

loading of solid circular cylindrical specimens of glass/vinylester and carbon/vinylester composites indicated

that the remotely applied shear stress caused a degradation in the composite compressive behavior leading

to a decrease in the failure strength. However, there was a difference in the response of carbon composites

to remote shear stress as compared to that of glass composites. The carbon composites show a nearly linear

reduction in compressive strength as the remote shear stress is increased, which matches with the prediction

Table 1

Properties of glass fiber and vinylester resin

Ef (MPa) lf (MPa) r0 (mm)

Glass fiber 72000 29508 0.012

Vinylester 3585 1318

Table 2

Ramberg–Osgood fit for shear stress–strain curve of glass/vinylester and pure vinylester specimens

Vf lc (MPa) A n

Glass composite 0.5 3260 68.68 12.44

Vinylester 0 1318 65.44 7.9603
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of the MBF model, Eq. (5). This can be observed in Fig. 18, where the axial compressive strength is plotted
against a normalized torque defined as T

2pR3. On the other hand, the glass/vinylester composites were found

to be initially unaffected by the remotely applied shear stress. When the remote shear stress has exceeded a

critical value, a drop in compressive strength was observed as can be seen in Fig. 19.

The results in Fig. 19 indicate that the MBF kinking model predictions (with U ¼ 4 deg) are inaccurate

for the glass composites which were tested under combined compression–torsion loading. It is noted that

for U ¼ 2 deg, the MBF prediction become higher but the trend is still inconsistent with the experimental

data. This is because the glass composites tested fail by splitting as observed in experiments, instead of

failing in a kinking mode. This observation indicates the need for a model that explicitly accounts for the
effect of fiber properties and the fiber/matrix interfacial fracture energy on the composite compressive

strength. The current fracture mechanics based model is used to compare the predicted and the observed

experimental values for the failure envelope under a combined state of compression–torsion loading. The

value of fracture energy as a function of fiber volume fraction of the composite is not available but a initial

value of cf ¼ 0:1224 kJ/m2 has been chosen to predict the failure envelope. The failure envelope predictions

based on this value of cf are very high since this value of cf corresponds to the fracture energy of pure epoxy

and is more suitable for lower volume fractions. Also, the failure of glass composites at high volume

fractions was seen to be a combination of splitting and kinking. Hence, the failure model was used to
predict the failure envelope for a range of fracture energy (cf ¼ 0:1224 kJ/m2, cf ¼ 0:0612 kJ/m2,

cf ¼ 0:0408 kJ/m2). The correlation between the predicted stresses and the experimentally obtained data is

good as indicated in Fig. 20. The better correlation between the predicted value of compressive strength and

experimentally observed strength for a lower value of cf could indicate that the interfacial fracture energy

Fig. 18. Combined compression–torsion failure plot for carbon/vinylester composite of Vf ¼ 50%.
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Fig. 20. Comparison of the new fracture critieria with experimental data for a glass/vinylester composite of Vf ¼ 50%.
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reduces at higher fiber volume fraction. The new model captures the trend of the failure data and the

correlation is much better in the range where the loading ratio, j is high. At lower values of j the model

predicts higher values of compressive strength than the observed experimental values. However, it should

be noted that the failure mode in case of higher values of shear stress (i.e. lower j) was not pure splitting but
a combination of matrix crushing and splitting, which is not taken into account by the current splitting

fracture model. To better understand the initial insensitivity of the glass composites to remote shear stress,

a plot of axial strain energy release rate (SERR) and torsional SERR as a precentage of the total SERR

with respect to the applied shear stress, s, is shown in Fig. 21. It can be seen from Fig. 21 that up to a

significant value of remote shear stress, s, the axial SERR contribution to the total SERR is nearly 100%

indicating that remotely applied shear stress does not play a role in inducing failure as seen in experiments.

When the shear stress s reaches a critical value, which is about 40–50 MPa for the glass composites there is

a sudden rise in the contribution from the torsional SERR and it reaches a peak value of 100% for pure
torsion loading.

6. Conclusions

Motivated by the experimental results obtained, we have presented a new fracture mechanics based

model to predict splitting failure in unidirectional composites subjected to remote combined axial com-
pression and torsional loading. Experimentally it was found that the response mechanism of glass fiber
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Fig. 21. Variation of axial and torsional SERR with shear stress, s for glass/vinylester composite of Vf ¼ 50%.
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composites to remote shear stress is different from that of the carbon fiber composites. The results indicate

that the conventional Budiansky–Fleck model is applicable to carbon fiber composites, where the failure is

due to buckling of fibers in an inelastic matrix. In glass composites there seems to be a critical value of

remote shear stress beyond which the compressive strength of the composite degrades very rapidly. This
difference in sensitivity to the remote shear stress led us to develop a new fracture mechanics based failure

model which captures the initial insensitivity of compressive strength to shear stress and the subsequent

steep drop in compressive strength when the remotely applied shear stress is very high. Apart from the

difference in sensitivity to remote shear stress exhibited by carbon and glass composites, the failure

mechanism is also found to be different. In glass composites the failure mechanism changed from splitting

to kinking. A combination of matrix crushing and splitting was observed as the remote shear stress was

increased. A single model which can effectively tackle the mode transition from splitting to kinking failure

and vice-versa would be ideal. Conceivably, such a model would have to be implemented numerically,
perhaps using the finite element method.
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Appendix A. Axial compliance of a misaligned fiber

Consider the response of an axially loaded misaligned fiber of uniform cross-sectional area, Af , length 2l
and elastic modulus Ef within the context of geometrically nonlinear Euler–Bernoulii beam theory in the X–

Z plane. Let a set of cartesian coordinate axes be chosen such that the X -axis is pointing along the center

line of the fiber and Z-axis is pointing in a direction transverse to the X -axis. Let the origin of the axes be
such that x ¼ 0 is at the center and x ¼ �l signify the abcissae of the crack tips. Let the initial misalignment,

total deflection in the Z-direction measured from the fiber centerline and the additional deflection be de-

noted by w0ðxÞ, wðxÞ and w1ðxÞ, respectively. Then, the deflection, wðxÞ ¼ w0ðxÞ þ w1ðxÞ, is governed by

d4w
dx4

� d4w0

dx4
þ k2 d

2w
dx2

¼ 0

where k2 ¼ Pf
Ef If

. Assuming an initial misalignment distribution of w0ðxÞ ¼ A0ð1þ cos px
l Þ, solving the above

equation for clamped boundary conditions at x ¼ �l, and, adopting the definition of axial strain

�x ¼ du
dx þ 1

2
dw
dx

� �2 � 1
2

dw0

dx

� �2
, in conjunction with the one dimensional stress-strain relation rx ¼ Ef�x, we ob-

tain the relation,

ðEAÞeff ¼
EfAf

1þ A2
0
Af

2If

Appendix B. Interaction between the axial stress and torsional stress

In this section, the effect of axial stress on the non-linear behavior of the matrix and composite under

shear stress is studied. For this purpose we use a J2 deformation theory of plasticity to model the matrix

and the composite material. The general method is described as follows. We first model the material as a

non-linear material and use a Ramberg–Osgood fit of the form c ¼ ðs=GÞ þ ðs=AÞn to describe the behavior
of the material in shear. Then using the definition of equivalent stress and equivalent strain, we can get the
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stress–strain curve of the material under uniaxial load. The uniaxial stress–strain relation is obtained in the

form � ¼ ðr=�Þ þ ðr=BÞn, where B ¼ A3ð1=2þ 1=2nÞ. Once the uniaxial stress–strain curve is determined we

can determine the plastic secant modulus, Ep
s and the Poisson�s ratio as follows

Ep
s ¼

BnE
Bn þ Ern�1

ms ¼
1

2
þ Ep

s ðm � 1=2Þ
E

Once the secant modulus and Poisson�s ratio are determined, then the corresponding shear stress and the

shear strain can be determined. Fig. 22 shows a comparison between the failure envelope predicted by
considering the material as a deformation theory of plasticity solid and the one obtained by not assuming it

to be a deformation theory of plasticity solid. It can be seen that there is not much of a difference between

the two curves except in the range where the compressive stress is low and shear stress is high.
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